Department of Mathematical and Computational Sciences
 National Institute of Technology Karnataka, Surathkal

sam.nitk.ac.in
sam@nitk.edu.in

Mathematical Methods for Engineers (MA 713) Problem Sheet - 9
 Invertibility and Isomorphisms

1. Label the following statements as true or false. In each part, V and W are vector spaces with ordered (finite) bases α and β, respectively, $T: V \rightarrow W$ is linear, and A and B are matrices.
(a) $\left([T]_{\alpha}^{\beta}\right)^{-1}=\left[T^{-1}\right]_{\alpha}^{\beta}$.
(b) T is invertible if and only if T is one-to-one and onto.
(c) $T=L_{A}$, where $A=[T]_{\alpha}^{\beta}$.
(d) $M_{2 \times 3}(F)$ is isomorphic to F^{5}.
(e) $P_{n}(F)$ is isomorphic to $P_{m}(F)$ if and only if $n=m$.
(f) $A B=I$ implies that A and B are invertible.
(g) If A is invertible, then $\left(A^{-1}\right)^{-1}=A$.
(h) A is invertible if and only if L_{A} is invertible.
(i) A must be square in order to possess an inverse.
2. For each of the following linear transformations T, determine whether T is invertible and justify your answer.
(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T\left(a_{1}, a_{2}\right)=\left(a_{1}-2 a_{2}, a_{2}, 3 a_{1}+4 a_{2}\right)$.
(b) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defined by $T\left(a_{1}, a_{2}, a_{3}\right)=\left(3 a_{1}-2 a_{3}, a_{2}, 3 a_{1}+4 a_{2}\right)$.
(c) $T: P_{3}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ defined by $T(p(x))=p^{\prime}(x)$.
(d) $T: M_{2 \times 2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ defined by $T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a+2 b x+(c+d) x^{2}$.
(e) $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ defined by $T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}a+b & a \\ c & c+d\end{array}\right)$.
3. Which of the following pairs of vector spaces are isomorphic? Justify your answers.
(a) F^{3} and $P_{3}(F)$.
(b) F^{4} and $P_{3}(F)$.
(c) $M_{2 \times 2}(\mathbb{R})$ and $P_{3}(\mathbb{R})$.
(d) $V=\left\{A \in M_{2 \times 2}(\mathbb{R}): \operatorname{tr}(A)=0\right\}$ and \mathbb{R}^{4}.
4. Let A and B be $n \times n$ invertible matrices. Prove that $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$.
5. Let A be invertible. Prove that A^{t} is invertible and $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$.
6. Prove that if A is invertible and $A B=O$, then $B=O$.
7. Let A be an $n \times n$ matrix.
(a) Suppose that $A^{2}=O$. Prove that A is not invertible.
(b) Suppose that $A B=O$ for some nonzero $n \times n$ matrix B. Could A be invertible? Explain.
8. Let A and B be $n \times n$ matrices such that $A B$ is invertible. Prove that A and B are invertible. Give an example to show that arbitrary matrices A and B need not be invertible if $A B$ is invertible.
9. Let A and B be $n \times n$ matrices such that $A B=I_{n}$.
(a) Use the above exercise to conclude that A and B are invertible.
(b) Prove $A=B^{-1}$ (and hence $B=A^{-1}$). (We are, in effect, saying that for square matrices, a "one-sided" inverse is a "two-sided" inverse.)
(c) State and prove analogous results for linear transformations defined on finite-dimensional vector spaces.
10. Define

$$
T: P_{3}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R}) \text { by } T(f)=\left(\begin{array}{ll}
f(1) & f(2) \\
f(3) & f(4)
\end{array}\right) .
$$

Show that the linear transformation T is one-to-one.
[Hint: Lagrange interpolation formula].
11. Let \sim mean "is isomorphic to." Prove that \sim is an equivalence relation on the class of vector spaces over F.
12. Let

$$
V=\left\{\left(\begin{array}{cc}
a & a+b \\
0 & c
\end{array}\right): a, b, c \in F\right\} .
$$

Construct an isomorphism from V to F^{3}.
13. Let V and W be n-dimensional vector spaces, and let $T: V \rightarrow W$ be a linear transformation. Suppose that β is a basis for V. Prove that T is an isomorphism if and only if $T(\beta)$ is a basis for W.
14. Let B be an $n \times n$ invertible matrix. Define $\Phi: M_{n \times n}(F) \rightarrow M_{n \times n}(F)$ by $\Phi(A)=B^{-1} A B$. Prove that Φ is an isomorphism.
15. Let V and W be finite-dimensional vector spaces and $T: V \rightarrow W$ be an isomorphism. Let V_{0} be a subspace of V.
(a) Prove that $T\left(V_{0}\right)$ is a subspace of W.
(b) Prove that $\operatorname{dim}\left(V_{0}\right)=\operatorname{dim}\left(T\left(V_{0}\right)\right)$.

Let V and W be vector spaces of dimension n and m, and let $T: V \rightarrow W$ be a linear transformation. Define $A=[T]_{\beta}^{\gamma}$, where β and γ are arbitrary ordered bases of V and W, respectively. Here $\phi_{\beta}: V \rightarrow F^{n}$ defined by

$$
\phi_{\beta}(x)=[x]_{\beta} \quad \text { for each } x \in V
$$

is called the standard representation of V with respect to β. In a similar way ϕ_{γ} is defined. Using ϕ_{β} and ϕ_{γ}, we have the relationship

$$
L_{A} \phi_{\beta}=\phi_{\gamma} T
$$

between the linear transformations T and $L_{A}: F^{n} \rightarrow F^{m}$. Heuristically, this relationship indicates that after V and W are identified with F^{n} and F^{m} via ϕ_{β} and ϕ_{γ}, respectively, we may "identify" T with L_{A}.
This diagram allows us to transfer operations on abstract vector spaces to ones on F^{n} and F^{m}.

16. Let $T: P_{3}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be the linear transformation defined by

$$
T(f(x))=f^{\prime}(x)
$$

Let β and γ be the standard ordered bases for $P_{3}(\mathbb{R})$ and $P_{2}(\mathbb{R})$, respectively, and let ϕ_{β} : $P_{3}(\mathbb{R}) \rightarrow \mathbb{R}^{4}$ and $\phi_{\gamma}: P_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ be the corresponding standard representations of $P_{3}(\mathbb{R})$ and $P_{2}(\mathbb{R})$. If $A=[T]_{\beta}^{\gamma}$, then

$$
A=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

Show that $L_{A} \phi_{\beta}(p(x))=\phi_{\gamma} T(p(x))$ for $p(x)=1+x+2 x^{2}+x^{3}$.
17. Let $T: V \rightarrow W$ be a linear transformation from an n-dimensional vector space V to an m dimensional vector space W. Let β and γ be ordered bases for V and W, respectively. Prove that $\operatorname{rank}(T)=\operatorname{rank}\left(L_{A}\right)$ and that nullity $(T)=\operatorname{nullity}\left(L_{A}\right)$, where $A=[T]_{\beta}^{\gamma}$.
18. Let V and W be finite-dimensional vector spaces with ordered bases $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\gamma=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$, respectively. Then there exist linear transformations $T_{i j}: V \rightarrow W$ such that

$$
T_{i j}\left(v_{k}\right)= \begin{cases}w_{i} & \text { if } k=j \\ 0 & \text { if } k \neq j .\end{cases}
$$

First prove that $\left\{T_{i j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ is a basis for $\mathcal{L}(V, W)$. Then let $M^{i j}$ be the $m \times n$ matrix with 1 in the i th row and j th column and 0 elsewhere, and prove that $\left[T_{i j}\right]_{\beta}^{\gamma}=M^{i j}$. Also there exists a linear transformation $\Phi: \mathcal{L}(V, W) \rightarrow M_{m \times n}(F)$ such that $\Phi\left(T_{i j}\right)=M^{i j}$. Prove that Φ is an isomorphism.
19. Let $c_{0}, c_{1}, \ldots, c_{n}$ be distinct scalars from an infinite field F. Define $T: P_{n}(F) \rightarrow F^{n+1}$ by

$$
T(f)=\left(f\left(c_{0}\right), f\left(c_{1}\right), \ldots, f\left(c_{n}\right)\right)
$$

Prove that T is an isomorphism.
Hint: Use the Lagrange polynomials associated with $c_{0}, c_{1}, \ldots, c_{n}$.
20. Let V denote the vector space of all sequences $\left\{a_{n}\right\}$ in F that have only a finite number of non-zero terms a_{n}. We denote the sequence $\left\{a_{n}\right\}$ by σ such that $\sigma(n)=a_{n}$ for $n=0,1, \ldots$. defined in Example 5 of Section 1.2, and let $W=P(F)$. Define

$$
T: V \rightarrow W \text { by } T(\sigma)=\sum_{i=0}^{n} \sigma(i) x^{i}
$$

where n is the largest integer such that $\sigma(n) \neq 0$. Prove that T is an isomorphism.
21. Let $T: V \rightarrow Z$ be a linear transformation of a vector space V onto a vector space Z. Define the mapping

$$
\overline{\mathrm{T}}: V / N(T) \rightarrow Z \text { by } \overline{\mathrm{T}}(v+N(T))=T(v)
$$

for any coset $v+N(T)$ in $V / N(T)$.
(a) Prove that $\overline{\mathrm{T}}$ is well-defined; that is, prove that if $v+N(T)=v^{\prime}+N(T)$, then $T(v)=T\left(v^{\prime}\right)$.
(b) Prove that $\overline{\mathrm{T}}$ is linear.
(c) Prove that $\overline{\mathrm{T}}$ is an isomorphism.
(d) Prove that the diagram shown in the figure commutes; that is, prove that $T=\overline{\mathrm{T}}_{\eta}$.

22. Let V be a nonzero vector space over a field F, and suppose that S is a basis for V. Let $C(S, F)$ denote the vector space of all functions $f \in \mathcal{F}(S, F)$ such that $f(s)=0$ for all but a finite number of vectors in S. Let $\Psi: C(S, F) \rightarrow V$ be defined by $\Psi(f)=0$ if f is the zero function, and

$$
\Psi(f)=\sum_{s \in S, f(s) \neq 0} f(s) s,
$$

otherwise. Prove that Ψ is an isomorphism. Thus every nonzero vector space can be viewed as a space of functions.

